brainxcan
S-BrainXcan takes GWAS as input and return the association between GWAS phenotype and a list of brain image-derived phenotypes.
BrainXcan manuscript link.
Software documentation (Quick start) link.
BrainXcan database link.
Analysis scripts link.
Installation notes
Software dependencies
The software is built upon both Python and R scripts along with some standalone executables. Here we provide a conda environment containing all the Python dependencies and snakemake
.
conda env create -f environment.yml
Also, install plink 1.9 which will be used for LD clumping in MR analysis.
By default, the pipeline call python
, Rscript
, and plink
as is. And you can provide the path to the desired executables in the configuration file. For instance,
# in config.[name].yaml
rscript_exe: 'path-to/Rscript'
python_exe: 'path-to/python'
plink_exe: 'path-to/plink'
Standalone R
R dependencies are: ggplot2
, dplyr
, optparse
, logging
, rmarkdown
, pdftools
, patchwork
, oro.nifti
, data.table
, pander
, arrow
, TwoSampleMR
.
Below, we provide an example for installing R dependencies as a conda environment. Any standalone R installation with these dependent packages being installed should work just fine.
`$ conda create -n r_36 -y $ conda activate r_36 (r_36) $ conda install -c r r (r_36) $ conda install -c conda-forge r-arrow (r_36) $ conda install -c conda-forge r-pdftools (r_36) $ conda install -c conda-forge r-gmp (r_36) $ conda install -c conda-forge r-rio (r_36) $ conda install -c conda-forge r-pander (r_36) $ conda install -c conda-forge r-sf (r_36) $ conda install -c conda-forge r-stars (r_36) $ conda install -c conda-forge r-plotly (r_36) $ conda install -c conda-forge r-ggnewscale (r_36) $ R
inside R
install.packages(c(‘ggplot2’, ‘dplyr’, ‘logging’, ‘optparse’, ‘rmarkdown’, ‘patchwork’, ‘oro.nifti’, ‘data.table’, ‘remotes’, ‘raster’, ‘rgeos’)) remotes::install_github(“MRCIEU/TwoSampleMR”)`
** Content copied from https://github.com/hakyimlab/brainxcan